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conjectured. According to the proposal, the gauge group, matter content and tree–level

superpotential of the gauge theory is encoded in a periodic tiling, the dimer graph. The

conjecture provides a simple procedure for determining the moduli space of the gauge

theory in terms of perfect matchings.

For gauge theories described by periodic quivers that can be embedded on a two–

dimensional torus, we prove the equivalence between the determination of the toric moduli

space with a gauged linear sigma model and the computation of the Newton polygon of

the characteristic polynomial of the dimer model. We show that perfect matchings are in

one–to–one correspondence with fields in the linear sigma model. Furthermore, we prove

that the position in the toric diagram of every sigma model field is given by the slope of

the height function of the corresponding perfect matching.
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1. Introduction

According to the AdS/CFT correspondence [1 – 4], the large N ’t Hooft limit of N = 4

SU(N) super Yang Mills is equivalent to type IIB String Theory on AdS × S5 with N

units of Ramond–Ramond 5-form flux on the S5. The N = 4 gauge theory arises as the

worldvolume theory of a stack of N D3-branes in flat ten dimensional space. Since its

original formulation, the AdS/CFT correspondence has been extended to and checked in

a variety of more realistic, less supersymmetric situations. The worldvolume theory of

D3-branes over a singular Calabi–Yau threefold is an N = 1 quiver gauge theory [5, 6].

The structure of the gauge theory reflects the properties of the singular manifold. When

the Calabi–Yau is a metric cone over an X5 Sasaki–Einstein manifold, the corresponding

dual is type IIB string theory on AdS5 × X5.

Toric Calabi–Yau’s are a particularly simple, yet extremely rich, subset in the space

of Calabi–Yau threefolds. Their simplicity resides in that they are defined by a relatively

small amount of combinatorial data and can be constructed in terms of two-dimensional

gauged linear sigma models.

Recently, we have witnessed remarkable progress in our understanding of N = 1 super-

conformal field theories, their embedding in string theory and their AdS/CFT duals. We

now review an abbreviated list of such developments. On the purely field theoretic front,

the a-maximization principle [7] has been a major breakthrough, permitting the computa-

tion of R-charges for arbitrary N = 1 superconformal theories. In [8, 9], explicit metrics
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for an infinite family of Sasaki–Einstein 5-manifolds denoted Y p,q were found. The metric

cones over these manifolds are toric [10] and the corresponding gauge theories have been

determined [11]. Afterward, a larger set of metrics dubbed La,b,c, containing the Y p,q’s as

particular cases, was discovered [12 – 14]. Again, the corresponding cones are toric and the

dual gauge theories were identified [15 – 17]. With these theories, we passed from having a

couple of examples in which the explicit AdS5 × X5 metric and the field theory dual were

known (X5 being S5, T 1,1 and their orbifolds) to an infinite number of such pairs. In [18],

the geometric dual of a-maximization, Z-minimization, was found. Using Z-minimization it

is possible to compute the volume of subcycles in a toric variety using solely the information

in the toric diagram. Further developments in the subject appeared in [19 – 21].

In parallel, there has been considerable advancement in the techniques for deriving

gauge theories on D-branes over singularities. Some of the approaches are partial reso-

lution [22 – 24] of orbifold singularities [5, 6], exceptional collections [25 – 32] and dimer

methods [15, 33 – 37], the subject of this paper. For toric manifolds, dimers have proved

to be very strong in comparison to alternative approaches, producing the most vast set of

results together with an appealing elegance and extreme computational simplicity.

As a result of these developments the paradigm under which we look for and test

AdS/CFT pairs, at least in the case of toric singularities, has changed. Dimer methods

immediately provide the gauge theory for a given toric geometry. Next, we can perform

non-trivial checks comparing R-charges and central charges of the field theory, determined

with a-maximization, to the volumes of supersymmetric cycles in the singular geometry,

which can be computed without explicit knowledge of the metric thanks to Z-minimization.

The dimer method approach to quiver theories on D-branes over toric singularities was

initiated in [33], where a striking correspondence between the perfect matching partition

function and the toric diagram of the underlying geometry was observed. The idea was

fully developed in [34], where the rules for constructing a tiling on which dimers live

for an arbitrary toric quiver were established. A physical interpretation of this tiling as a

configuration NS5 and D5-branes was also proposed. In addition, [34] conjectured a specific

correspondence between GLSM fields and perfect matchings, noticing also how perfect

matchings are natural variables to solve F-term equations. This correspondence, which

we call Mathematical Dimer Conjecture in this paper, leads to impressive simplifications

in the study of branes on toric singularities and lies at the core of the breakthrough of

the dimer ideas. The main result of this paper is the proof of the Mathematical Dimer

Conjecture.

Until recently, finding the tiling for a particular theory was somewhat ad hoc. A major

breakthrough was made in [35], by interpreting R-charges as angles in the tiling. Further-

more, based on the observation that the so called zig-zag paths are in one-to-one corre-

spondence with the edges of the toric diagram, the Fast Inverse Algorithm was established

which is by now the most efficient tool for computing the quiver and the superpotential

from the toric diagram of a toric non-compact Calabi–Yau. A physical realization of the

tilings, which supports the proposal of [34], and a proof of the Fast Inverse Algorithm was

recently derived in [36] using mirror symmetry.

In order to provide a self-contained presentation, we devote sections 2 and 3 to review
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background material. Section 2 discusses the main concepts in toric quivers, brane tilings

and dimer models. Section 3 presents the gauged linear sigma model (GLSM) approach for

computing toric moduli spaces of toric gauge theories. In section 4 we present the conjecture

of [34], splitting it into the Mathematical and Physical dimer conjectures. Finally, we prove

the Mathematical Dimer Conjecture in section 5. We illustrate all discussions in the paper

with the relatively non-trivial example of a quiver theory for D3-branes probing a complex

cone over the second del Pezzo surface.

2. Toric quivers and brane tilings

We consider the N = 1 superconformal gauge theories that live on the worldvolume of a

stack of N D3-branes probing a non-compact toric Calabi–Yau 3-fold. For every singularity,

the gauge theory on the D3-branes is not unique. In fact, we have an infinite number

of gauge theories connected by Seiberg duality [38 – 40, 25, 41] that flow to the same

universality class in the infrared limit. Every gauge theory is specified by a gauge group

and a matter content, which are encoded in a quiver diagram, and a superpotential. We

will concentrate on a particular subset of this infinite set of dual theories, denoted toric

phases. A toric phase is defined as a phase in which the gauge group is
∏

SU(N), i.e. the

ranks of all gauge group factors are the same. Non-toric phases are obtained by Seiberg

duality on a node for which the number of flavors is larger than twice the number of

colors. The fact that the probed geometry is an affine toric variety constraints the possible

structure of the superpotential. It has to be such that all F-term equations are of the form

“monomial = monomial”. This constraint is dubbed the toric condition [42] and can

be rephrased by saying that every field in the quiver must appear exactly in two terms of

the superpotential, with both terms having opposite signs. In addition, all superpotential

coefficients can be normalized to 1 by rescaling the fields.

Figure 1 shows one toric phase for the complex cone over dP2 [24, 42], usually referred

to as Model II. The corresponding superpotential is given by

W = [X34X45X53] − [X53Y31X15 + X34X42Y23]

+ [Y23X31X15X52 + X42X23Y31X14] − [X23X31X14X45X52]
(2.1)

where we have grouped terms to make a Z2 global symmetry that acts by interchanging

nodes 1 ↔ 2 and 4 ↔ 5 and charge conjugating all the fields manifest. We will use this

example to illustrate all our discussions.

In [34], it was realized that all the information in the quiver diagram and the super-

potential of a toric phase can be encapsulated in a single object: the periodic quiver.

A periodic quiver is a planar quiver drawn on the surface of a 2-torus (equivalently, a

doubly periodic infinite quiver on the plane) s. t. every plaquette corresponds to a term

in the superpotential. The sign of the superpotential terms is given by the orientation of

the corresponding plaquettes, which alternates between clockwise and counterclockwise.

The toric condition is automatically incorporated in the periodic quiver, since every field

appears precisely in two neighboring plaquettes with opposite orientation.
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Figure 1: Quiver diagram for Model II of dP2.
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Figure 2: Periodic quiver for Model II of dP2. We show several fundamental cells.

It has been conjectured that any quiver corresponding to D3-branes probing non-

compact, toric Calabi–Yau threefolds can be embedded in a T 2 [34]. Furthermore, the two

cycles around the T 2 have been identified with the non-R symmetry U(1) isometries [43].

In section 2.1, we discuss how conformal invariance restricts the possible embeddings of

the periodic quiver. Figure 2 shows the periodic quiver for our dP2 example.

Along the rest of the paper, our working hypothesis will be that we consider gauge

theories that are described by periodic quivers on T 2. For this class of theories, we will show

that the GLSM determination of the moduli space can be translated into a dimer problem.

The superpotential can be written schematically as

W =
∑

µ

±Wµ (2.2)

where every superpotential term Wµ is a gauge invariant mesonic operator with R-charge

equal to 2 and neutral under the U(1)×U(1) flavor symmetry.1 We have explicitly indicated

the sign of each term, which satisfy the toric condition.

1In some cases the U(1)2 global symmetry can be enhanced. For example, for Y p,q theories the flavor

symmetry is SU(2) × U(1) [11].
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Figure 3: Two plaquettes are equal once the F-term equation for the common field is imposed.

In toric quivers, F-term equations can be used to show that all these operators are

equivalent in the chiral ring. The toric condition implies that every field Xi appears

(linearly) in exactly two superpotential terms. Let us call them W1 and −W2 (according

to the toric condition both contributions have opposite signs). Then

0 = X ∂X W = X ∂X (W1 − W2) = W1 − W2 (2.3)

This becomes very intuitive from the perspective of the periodic quiver (see figure 3),

where one can show that any two adjacent plaquettes are equal by using the F-term relation

for the common field. Iterating this process we see that, once F-term equations are taken

into account, all superpotential terms are identical. This idea has already been used in [43].

In [34], an alternative representation of the gauge theory, dubbed brane tiling2 was

introduced. The brane tiling is constructed by dualizing the periodic quiver graph: Nodes,

arrows and plaquettes of the periodic quiver are replaced by faces, transverse lines and

nodes, respectively.

The resulting tiling is a bipartite graph. This means that it is possible to assign

nodes two colors (by convention we choose black and white) such that white nodes are

only connected to black nodes and viceversa. The coloring of nodes is in one-to-one cor-

respondence with the orientation of plaquettes in the periodic quiver (hence the sign of

superpotential terms). Edges in the tiling carry a natural orientation (for example from

white to black nodes), which corresponds to the orientation of arrows in the periodic quiver.

We can translate among periodic quiver, brane tiling and gauge theory concepts using

the following dictionary

Periodic quiver Brane tiling Gauge theory

node face SU(N) gauge group

arrow edge bifundamental (or adjoint)

plaquette node superpotential term

2We alert the reader that the goal of this paper is independent of the possible interpretation of the

tiling as a physical object, such as a configuration of branes. However, we will adhere to the term brane

tiling for simplicity. The arguments that identify brane tilings with physical configurations of D5– and

NS5-branes are primarily based on the analogy with brane box and brane diamond constructions dual to

orbifold singularities [44 – 46]. A concrete string theory realization of the tiling was studied in detail in [36].
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Figure 4: Brane tiling for Model II of dP2.

We denote F , E and N the number of faces, edges and nodes in the tiling. They

correspond to the number of gauge groups, chiral multiplets and superpotential terms in

the gauge theory.

For a comprehensive description of brane tilings we refer the reader to [34]. Figure 4

shows the brane tiling for the dP2 example under consideration, obtained by dualizing the

periodic quiver in figure 2

In analogy to the chemical terminology, every edge in the tiling is denoted a dimer. A

perfect matching is a collection of edges (dimers) such that every node in the tiling is the

endpoint of exactly one edge in the set. For later reference, we list all perfect matchings

for the dP2 brane tiling in the appendix. Perfect matchings play a fundamental role in our

forthcoming discussion.

2.1 Geometry of the tiling embedding from conformal invariance

In the previous section we stated that we will focus on tilings of a two dimensional torus.

Since the gauge theories under consideration have a finite number of gauge groups, fields

and superpotential terms, it is natural to represent them by a tiling of a compact Riemann

surface Σ. But, is any Σ a valid option? Why do we choose a T 2? Interestingly, as we

discuss in this section, the gauge theory actually constrains the geometry of Σ.

Conformal invariance at the IR fixed point requires the beta functions for all superpo-

tential and gauge couplings to be zero. For superpotential couplings this implies that

∑

i ∈ edges

around node

Ri = 2 for every node (2.4)

while vanishing of gauge coupling beta functions corresponds to

2 +
∑

i ∈ edges

around face

(Ri − 1) = 0 for every face (2.5)
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Figure 5: A bipartite graph tiling the Klein Bottle.

Adding (2.5) over all faces and using (2.4) we conclude that

F + N − E = χ(Σ) = 0 (2.6)

Hence, conformal invariance implies that the Euler characteristic of Σ has to be zero.

This fact has been already noticed in [34]. There are only two options for Σ. On one hand,

it can be a T 2 as considered so far in the paper and in the literature. On the other hand,

there is the interesting possibility of Σ being the Klein Bottle. Figure 5 shows an example

of a bipartite tiling of the Klein Bottle. This tiling is known as the Franklin graph [47] and

has F = 6, N = 12 and E = 18, hence satisfying (2.6).

At present, both the gauge theory and geometric interpretations of such a tiling are

unknown and remain an intriguing question that deserves further study. Along the rest of

the paper, we will restrict ourselves to the case in which Σ = T 2. The planar quiver, dual

to the tiling, will consequently be also embedded in a T 2.

2.2 Height function

Given a perfect matching M , it is possible to define an integer-valued height function

h over the brane tiling [48, 49]. In order to do so we fix a reference perfect matching M0

and a face f0. The difference M − M0 defines a set of closed curves over the tiling. The

minus sign flips the orientation of bifundamentals associated with the edges of M0, giving

the resulting closed curves a definite orientation. The height function jumps by ±1 when

crossing a curve, where the sign is given by the orientation of the crossing. The height for

f0 is set to be zero. Notice that the difference of the height functions of two matchings is

well-defined independently of M0.

The slope of a perfect matching is defined as the height change (hx, hy) when moving

from one unit cell to the next one along the two fundamental directions. Changing M0

amounts to a constant shift (hx0, hy0) in the slopes of all perfect matchings.

We exemplify the concepts presented in this section with dP2. Figure 6 shows a perfect

matching, a reference perfect matching and the corresponding height function. In this case,

we see that the slope is (hx, hy) = (−1, 0).

There is an equivalent way to define slopes, that later will turn out to be useful. To

every perfect matching we can associate a unit flow on its edges, directed from white to
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h=2

h=0

h=1

Figure 6: (a) The dimers in the a perfect matching M are shown in cyan. (b) The dimers in the

reference perfect matching M0 are shown in red. (c) The height function, whose level curves are

given by M − M0.

black nodes. The slope then corresponds to the net flux between adjacent fundamental

regions in the x and y directions. The appendix gives the slopes for all perfect matchings

of Model II of dP2. We will come back to the interpretation of matchings as unit flows in

section 5.2.

It is straightforward to count the number of perfect matchings with a given slope [48,

49]. In order to do so, we first introduce the Kasteleyn matrix of the tiling K(x, y). It is a

weighted, signed, (N/2)×(N/2) adjacency matrix defined as follows. In our convention, the

rows of K(x, y) are indexed by white nodes and its columns by black nodes. We associate

a ±1 weight to every edge ei in the tiling such that when we multiply the weights around

every face we have

sign
(

∏

ei

)

=

{

+1 if (# edges) = 2 mod 4

−1 if (# edges) = 0 mod 4
(2.7)

Next we take two fundamental paths Cx and Cy in the graph dual to the brane tiling

winding once around the (1, 0) and (0, 1) cycles of the 2-torus. These paths are conven-

tionally denoted flux lines and can be visualized as the boundaries of the fundamental

region. The weight of every edge in the tiling that is crossed by Cx is then multiplied by x

or x−1 depending on the orientation of the crossing. Respectively, edges crossed by Cy are

multiplied by y or y−1.

The determinant of the Kasteleyn matrix P (x, y) = detK(x, y) is a Laurent polyno-

mial, the so-called characteristic polynomial of the dimer model. It has the following

general form

P (x, y) = xhx0yhy0

∑

chx,hy
xhxyhy (2.8)

P (x, y) is the partition function of perfect matchings on the brane tiling, in the sense

that the integer coefficients |chx,hy
| count the number of perfect matchings with slope

(hx, hy) [49].
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In our example, we have

K =







1 − x−1 y 1

1 1 x

−1 + x−1y−1 1 1






(2.9)

Then

P (x, y) = x−1y−1 − x−1 + 5 − x − y − xy (2.10)

which gives the following counting of perfect matchings

slope # matchings

(-1,-1) 1

(-1,0) 1

(0,0) 5

(1,0) 1

(0,1) 1

(1,1) 1

that is in precise agreement with the direct counting in the appendix.

3. Toric geometry from gauge theory

We now review the procedure for computing the moduli space of a given toric quiver (i.e.

quiver plus toric superpotential). For N D3-brane probes, the moduli space along the

mesonic branch corresponds to the symmetric product of N copies of the probed geometry.

This procedure has been algorithmized in [24] and dubbed the Forward Algorithm. It

involves the following steps:

• Use F-flatness equations to express the fields in the quiver (which transform in bifun-

damental or adjoint representations) Xi, i = 1, . . . , E in terms of F + 2 independent

variables vj. Although the vj ’s can be taken to be a subset of the Xi fields, other

choices are also possible. For example, as we will discuss later, dimers pick other

combinations which turn out to be more natural. The final answer does not de-

pend on this choice. Since for toric quivers the F-term equations are of the form

monomial = monomial, each Xi is given by a product of vj’s to appropriate powers.

This can be encoded in an E × (F + 2) matrix K according to

Xi =
∏

v
Kij

j , i = 1, . . . , E, j = 1, . . . , F + 2 (3.1)

The Xi can involve negative powers of the vj ’s, i.e. Kij may have negative entries.

The row vectors ~Ki of K span a cone M+ in R
F+2, corresponding to non-negative

linear combinations of them.

• Next, to get rid of the negative powers, we introduce new variables pα, α = 1, . . . , Nσ.

In order to do so, we compute the cone N+ dual to M+. N+ is spanned by vectors

– 9 –
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~Tα, such that ~Ki · ~Tα ≥ 0. These vectors can be organized as the columns of an

(F + 2) × Nσ integer matrix T such that K · T ≥ 0 for all entries. The dimension

of the dual cone Nσ is not known a priori and is determined by explicitly computing

N+. The intermediate and original variables vj and Xi are expressed in terms of the

pα as follows

vj =
∏

α

p
Tjα
α Xi =

∏

α

p
P

j KijTjα

α (3.2)

The amount of operations required to compute Nσ grows with the size of the gauge

theory. This growth becomes prohibitive when trying to apply the Forward Algorithm

to gauge theories with large quivers. Later, we will explain how this difficulty is

circumvented by the dimer model.

• A convenient way to encode the relations among the Nσ variables pα and the original

F + 2 vj is by obtaining them as D-terms of an appropriately chosen U(1)Nσ−(F+2)

gauge group. Its action is given by an (Nσ−F −2)×Nσ charge matrix QF (where the

subindex F indicates that QF contains all the information about F-term equations).

Gauge invariance of the vj’s under the new gauge group gives rise to the desired

relations. Hence, QF is such that

T · QT
F = 0 (3.3)

• The charges of fields under the F gauge groups of the quiver are summarized by the

F ×E incidence matrix d. It is defined as dli = δl,head(Xi)−δl,tail(Xi). Every column

associated to a bifundamental field contains a 1 and a −1 and the rest of the entries

are 0’s. Adjoint fields are represented in quiver language by arrows starting from and

ending at the same node. Hence, the corresponding columns have all 0’s. It is clear

that one of the rows of d is redundant. Thus, we define the matrix (F −1)×E matrix

∆, which is obtained from d by deleting one of its rows. For our example, we have

∆ =

2

6

6

6

6

6

4

X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

1 −1 1 −1 1 0 0 0 0 0 0 0

2 0 0 0 0 −1 1 −1 1 0 0 0

3 0 −1 0 −1 1 0 1 0 −1 1 0

4 1 0 0 0 0 0 0 −1 1 0 −1

3

7

7

7

7

7

5

(3.4)

The F − 1 independent D-term equations of the original theory are implemented by

adding a U(1)F−1 gauge symmetry to the GLSM. The charges of the pα under these

symmetries is given by an (F − 1) × Nσ matrix QD which can be determined in two

steps. First, we construct an (F − 1)× (F + 2) matrix V that translates the charges

of the Xi’s to those of the vj’s. Thus,

V · KT = ∆ (3.5)

Next, we find an (F +2)×Nσ matrix U that transform the charges of vj ’s into those

of the pα’s

U · T T = Id(F+2)×(F+2) (3.6)

– 10 –
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Finally, we have

QD = V · U (3.7)

QD and QF are combined into a single (Nσ − 2) × Nσ charge matrix Q

Q =

(

QD

QF

)

(3.8)

The construction we outlined can interpreted as a Witten’s two dimensional gauged

linear sigma model (GLSM) of Nσ chiral fields pα and U(1)Nσ−3 gauge group with

charges given by Q.

• The U(1) charges defined above are exactly those that appear in the construction of

a toric variety as a symplectic quotient. In toric geometry it is standard to encode

the charge matrix by means of a toric diagram.

G = (Ker(Q))T (3.9)

One of the rows in G can be set to have all entries equal to 1 by an appropriate

SL(3, Z) transformation. This is the Calabi–Yau condition and amounts to the fact

that the sum of the charges of all the pα under any of the U(1) gauge symmetries

is zero. Effectively, we are left with a two dimensional toric diagram. Every GLSM

field pα corresponds to a point in the toric diagram, which is a vector ~vα in Z
3. Q is

given by linear relations of the form

n
∑

i=1

Qα
a~vα = 0 (3.10)

satisfied by the ~vα’s.

Figure 7 summarizes the relevant matrices in the Forward Algorithm.

4. The conjecture

Having introduced all necessary concepts, we are ready to study the conjecture of [34]. It is

convenient to divide the conjecture into two parts, to which we refer as the Mathematical

and the Physical Dimer Conjectures.

Mathematical dimer conjecture

The mathematical dimer conjecture states that there is a one-to-one correspondence be-

tween fields pα in the gauged linear sigma model construction of the toric moduli space

of the given toric gauge theory and perfect matchings in the brane tiling dual to the toric

quiver. Here, when we refer to a toric gauge theory we mean a gauge theory whose quiver

can be drawn on a surface of a 2-torus, s. t. the plaquettes give the terms in the super-

potential (see discussion in section 2.1). Furthermore, according to the conjecture, the

toric diagram is the Newton polygon of the characteristic polynomial (i.e. the set of integer

exponents of monomials [49]) which, as we have already discussed, is the set of height

function monodromies (“slopes”) of the perfect matchings.
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Figure 7: Relevant matrices in the Forward Algorithm.

Physical dimer conjecture

The physical dimer conjecture identifies dimers and tilings with physical objects. According

to the conjecture, the brane tiling is interpreted as a physical brane configuration. It

consists of an NS5-brane extended in the 0123 directions that wraps an holomorphic curve

in 4567. The 5 and 6 directions are periodically identified giving rise to the 2-torus. D5-

branes extend in 012346, suspended within the “holes” of the NS5-brane in the 46 torus.

Every stack of D5-branes gives rise to a gauge group. Strings crossing every NS5-brane

segment and connecting two D5-brane stacks correspond to chiral multiplets transforming

in the bifundamental representation of the corresponding gauge groups. Gauge invariant

superpotential terms are produced by the coupling of massless string states at the nodes

of the NS5-brane configuration. This configuration is conjectured to be related to the D3-

branes over the singularity by two T-dualities. The suspended D5-branes are dual to the

probe D3-branes and the NS5-brane structure is dual to the singular geometry.

The correspondence between dimers and a physical brane system could be more subtle

and might differ from the one suggested by the physical dimer conjecture. However, the

validity of the mathematical dimer conjecture, which is the main subject of this paper, is

completely independent of how tilings are realized in terms of branes.3

3Recently, another physical description of the tiling has been developed in [36]. Using mirror symmetry,

the D3-branes are mapped to a system of D6-branes that wraps a self-intersecting T 3 torus. The mirror

geometry is a double fibration over the complex W plane, one being the W = uv torus fibration degenerating

at the origin and another being the W = P (w, z) fibration degenerating at some critical points. Here

P (w, z) ≡ det(Kasteleyn) is the spectral curve with (w, z) = (es+iθ, et+iφ) ∈ (C∗)2. The spectral curve

can then be projected to the non-compact space (s, t) which yields the amoeba whose spine is the pq-web

of the toric diagram. Projection on the compact (θ, φ) coordinates gives the so-called alga of the curve.

Its skeleton is the rhombus loop diagram that has been used to construct the brane tiling for a given

toric diagram [35, 36]. This construction supports the D5-NS5 tiling proposal of [34], which appears when

T-dualizing along the S1 fibre in the uv plane.
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Having introduced the conjectures of [34], we devote the rest of the paper to proving

the mathematical dimer conjecture.

5. The proof

In this section we prove the Mathematical Dimer Conjecture. As we said before, we prove

it for toric gauge theories whose quivers (and hence their brane tilings) are embedded in a

two-torus. A considerable amount of evidence supporting its validity has been accumulated

in the literature. This includes:

• Construction of the correct toric diagram for the moduli space of gauge theories for an

infinite number of singularities. This number is infinite thanks to the determination

of the tilings for the Y p,q [34] and La,b,c manifolds [15, 17].

• Precise agreement between the number of perfect matchings and the multiplicity of

GLSM fields in toric diagrams for various models [15].

• Derivation of Seiberg dual theories by transformations of the tilings preserving the

Newton polygon of the characteristic polynomial [15, 35].

• In [15], it was shown that given a simple proposal to express quiver fields in terms of

perfect matchings, F-term conditions are straightforwardly satisfied. This proposal

will be derived as part of our proof.

• The geometry of brane tilings has recently been investigated in [36]. The results of this

paper show how tilings appear in the description of toric gauge theories by explicitly

deriving them from the mirror geometry but do not prove the correspondence between

perfect matchings and GLSM fields.

Our computations with dimers will closely follow those of the Forward Algorithm. It is

important to keep in mind that some of the steps (or intermediate matrices) are naturally

skipped by the inherent simplifications of the dimer approach. In order to avoid confusion

we will use tilded variables at some stages of the proof. In the end, we will show that they

can be identified with the untilded ones of the Forward Algorithm.

5.1 Solving F-term conditions: gauge transformations and magnetic coordi-

nates

The tiling is bipartite, therefore each edge has a natural orientation from its white vertex

to its black vertex. Any weight function ε(e) on the edges defines a 1-form, satisfying

ε(−e) = −ε(e), where −e is the edge with opposite direction [49]. We denote the linear

space of 1-forms on the tiling by Ω1. Analogously, the functions on nodes and faces define

0– and 2-forms in Ω0 and Ω2. The three spaces are related by differentials

0 → Ω0 d
−→ Ω1 d

−→ Ω2 → 0 (5.1)

– 13 –



J
H
E
P
1
1
(
2
0
0
6
)
0
5
4

We can now define gauge transformations on the tiling, whose action on the 1-forms

is given by [49]

ε′(ei) = ε(ei) + df f ∈ Ω0 (5.2)

That is

ε′(ei) = ε(ei) + f(bi) − f(wi) (5.3)

with bi and wi the black and white nodes at the endpoints of edge ei. These gauge

transformations of the tiling should not be confused with the gauge symmetries of the quiver

theory. We are confident that the distinction between both types of gauge transformations

will be clear from the context in which we use them. Given a closed path on the tiling

γ = {w0, b0,w1, b1, . . . , bk−1,wk} wk = w0 (5.4)

we define the magnetic flux through γ as

B(γ) =

∫

γ

ε =
k−1
∑

i=1

[ε(wi, bi) − ε(wi+1, bi)] (5.5)

Magnetic fluxes are clearly gauge invariant. The brane tiling is embedded in a two

dimensional torus. Hence, gauge inequivalent classes of 1-forms are parameterized by

R
F−1 ⊕ R

2. The first term corresponds to dε ∈ Ω2, a function on the faces of the tiling

subject to the condition
∑

dε = 0. We can specify the R
F−1 part by the magnetic fluxes

Bz(j) (j = 1, . . . , F − 1) through the γi contours around F − 1 faces. The remaining two

parameters (Bx, By) correspond to fluxes around two non-trivial cycles (γx, γy) winding

around the torus.

Gauge transformations are of particular interest because taking ε to be the energy

function they do not modify the energy difference between perfect matchings. Hence, the

probability distribution of perfect matchings is invariant under gauge transformations.

In this section, we will exploit gauge transformations with a different goal, namely to

provide a convenient set of variables (mostly in Ω2) that solve the F-term equations. For

this purpose, we define the complex 1-form

ε(ei) = ln Xi ⇒ under gauge transformations: X ′
i = Xie

f(bi)−f(wi) (5.6)

In this context, we refer to the Xi’s as weights.4

Using (5.6), we can define new variables associated to closed paths

ṽ(γ) = e
R

γ
ε =

k−1
∏

i=1

X(wi, bi)

X(wi+1, bi)
(5.7)

where the product runs over the contour γ. Then {ṽj ≡ ṽ(γj), ṽx, ṽy} provides a parame-

trization of inequivalent gauge classes.

4If we regard −ε(ei) as the energy of a link, the Xi’s can be interpreted as complex valued Boltzmann

weights.
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We define a convenient basis of 0-forms F (µ), µ = 1, . . . , N ,

F (µ)

{

fµ = 1

fν = 0 for ν 6= µ
(5.8)

Their virtue is that superpotential terms transform simply under the corresponding

gauge transformations. Taking the gauge transformation for αµF (µ), with αµ a complex

coefficient, we get

W ′
µ = Wµesign(µ)vµαµ (5.9)

where vµ is the valence of node µ (i.e. the order of the associated superpotential term Wµ)

and following (5.6) sign(µ) is 1 for black nodes and −1 for white nodes.

As discussed in section 2, solving F-term conditions corresponds to setting all the Wµ’s

equal. Given arbitrary values of the Wµ, it is possible to set them equal to W1 by the basic

gauge transformations of (5.9) with

αµ =
sign(µ)

vµ

ln W1

ln Wµ
(5.10)

In other words, solving F-term equations corresponds in this language to partially

fixing the gauge. Each gauge choice can be labeled by the common value of Wµ = W1.
5

Equivalently, one can label gauge choices using the more symmetric variable V defined as

V = W N
1 =

N
∏

µ=1

Wµ =

E
∏

i=1

X2
i (5.11)

We denote V, the ṽj ’s, ṽx and ṽy the flux variables.

We have just seen that on each gauge orbit there exists a unique solution to F-term

equations for every value of V. Hence, we conclude that solutions to F-flatness equations

are parametrized by the F +2 flux variables: the value of V indicating a partial gauge fixing,

along with the variables ṽj (j = 1, . . . , F − 1), ṽx and ṽy parametrizing gauge equivalence

classes. It is now clear that these fluxes can be identified with the vj (j = 1, . . . , F + 2)

variables of the Forward Algorithm.

With this identification, it is straightforward to write down a left inverse matrix for

K, which we call K−1
L . This is an (F + 2) × E matrix such that K−1

L K = Id(F+2)×(F+2).

For our dP2 example, we have

K
−1

L =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

ṽ1 1 −1 1 −1 0 0 0 0 0 0 0

ṽ2 0 0 0 0 1 −1 1 −1 0 0 0

ṽ3 0 1 0 1 −1 0 −1 0 1 −1 0

ṽ4 −1 0 0 0 0 0 0 1 −1 0 1

ṽx −1 0 0 1 −1 0 0 1 0 0 0

ṽy 1 −1 0 0 0 0 0 0 0 1 −1

V 2 2 2 2 2 2 2 2 2 2 2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

(5.12)

5We thank Alastair King for discussions on related ideas.
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Figure 8: Contours defining ṽx and ṽy.

for which we have taken the γi loops to run clockwise around faces, and γx and γy are the

two non-trivial cycles shown in figure 8, i.e.

ṽx = X−1
14 X42X

−1
23 Y31

ṽy = X53X
−1
31 X14X

−1
45

(5.13)

With this choice of contours, it is clear that the first F − 1 rows of K−1
L are equal

to −∆ (see (3.4)). There are other paths equivalent to γx and γy that are obtained by

deforming them using F-term equations.

The matrix K converts magnetic variables into weight variables. We do not determine

K explicitly in this section as it is not necessary for our discussion. As explained in

section 3, the vectors ~ni corresponding to rows in K (i = 1, . . . , E) span a cone S in R
F+2.

5.2 The GLSM fields are perfect matchings

In the previous section we discussed at length how the F-flatness conditions can be satisfied

in terms of the ṽi magnetic fluxes that are in one-to-one correspondence with the variables

vj according to (5.7). The relation between these variables and the original Xi fields are

encoded in the matrix K, whose rows span the cone M+ in R
F+2. The Forward Algorithm

proceeds by computing the cone dual to M+:

N+ = {x ∈ R
F+2 | 〈 ~Ki, x〉 ≥ 0 for i = 0, . . . , E} (5.14)

There are Nσ spanning vectors for this dual cone N+. These Nσ vectors define the columns
~Tj of the matrix T and they are in one-to-one correspondence with the homogeneous pα

GLSM coordinates.

We would like to understand the computation of the dual cone in terms of tiling

techniques. In order to do so, we introduce a slightly different viewpoint that will prove to

be useful.

An arbitrary real weight system on the edges can be interpreted as a white-to-black

flow6 [49]. The (possibly negative) strength of the flow from white to black node along an

edge ei is given by the corresponding real weight ci. The real weights considered in this

section are not to be confused with the complex weights given by Xi that we have discussed

earlier.

6The flow space should not be confused with the flux space, which was introduced in the previous section

and is R
F+2.
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A flow is nonnegative if it has a nonnegative strength on all edges of the tiling (ci >

0 for all ei). The flows are typically not divergence free, therefore there can be sinks and

sources at the vertices. The net flux coming out of a given white node or into a black node

is denoted the vorticity of the node.

For each point in flux space x ∈ R
F+2 we define a real flow on the tiling whose strength

at the ith edge is given by
∑

j Kijxj . Hence the points inside N+ correspond to nonnegative

flows in this picture.

We want to find the spanning vectors ~Tα of the dual cone N+ ∈ R
NF +2. Following

our discussion in section 5.1, we can rescale the vectors ~Tα by a positive real number using

the gauge transformations of the dimer model. Thus we can set their vorticity to one.

Therefore, we can focus on the hyperplane H ⊂ R
NF +2 such there is a unit source residing

at every white vertex and a unit sink at the black ones. The flows associated with this

hyperplane are called unit flows.

The vectors ~Tα span the cone N+, hence they also span the intersection H ∩N+ in flux

space. From the previous discussion, we know that this intersection is linearly mapped by

Kij to nonnegative unit flows P ⊂ R
E in flow space. It is well-known in the literature that

the set of nonnegative unit flows is a convex polytope in the flow space and that perfect

matchings are vertices of this polytope (Perfect Matching Polytope Theorem, [50]). Their

preimages are the spanning vectors ~Tα in flux space. For ~Tα, the flow on the ith edge is

given by
∑

j Kij(~Tα)j =
∑

j KijTjα. We conclude that there is a one-to-one correspondence

between the GLSM fields in the Forward Algorithm and perfect matchings.

Perfect matchings are naturally represented as unit flows, hence they immediately

determine KT . By introducing the following “product” between perfect matchings and

edges in the tiling

〈ei, pα〉 =

{

1 if ei ∈ pα

0 if ei /∈ pα

(5.15)

the matrix KT is simply

(KT )iα = 〈ei, pα〉 (5.16)

The correspondence between GLSM fields and perfect matchings and the computation of

KT in terms of perfect matchings that we derived in this section was originally proposed

in [34].
Using (5.16) for dP2, we have

KT
T =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

X14 X31 X15 Y31 X23 X52 Y23 X42 X34 X53 X45

p1 0 1 0 1 0 0 0 0 1 0 0

p2 0 0 1 0 0 0 0 1 0 0 1

p3 0 0 0 0 0 1 0 1 0 1 0

p4 0 0 0 0 1 0 1 0 0 1 0

p5 1 0 1 0 0 0 0 0 1 0 0

p6 0 0 0 1 0 0 0 1 0 1 0

p7 1 0 0 0 1 0 0 0 0 1 0

p8 0 1 0 0 1 0 0 0 0 0 1

p9 0 0 1 0 0 0 1 0 1 0 0

p10 0 1 0 0 0 1 0 0 1 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(5.17)
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As we discussed in the previous section, the left inverse of K, which we called K−1
L ,

arises naturally using dimer methods. Then, it is straightforward to write down

T = K−1
L KT (5.18)

T =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

ṽ1 −2 1 0 0 2 −1 1 −1 1 −1

ṽ2 0 −1 −2 2 0 −1 1 1 1 −1

ṽ3 3 0 −1 −3 1 0 −2 0 0 2

ṽ4 −1 2 1 0 −2 1 −1 1 −1 −1

ṽx 1 1 1 −1 −1 2 −2 −1 0 0

ṽy −1 −1 1 1 1 1 2 −2 0 −1

V 6 6 6 6 6 6 6 6 6 6

3

7

7

7

7

7

7

7

7

7

7

7

7

5

(5.19)

Notice that the fact that T may have negative entries is not a problem. The important

point is that (KT )iα ≥ 0. In fact we can give a straightforward definition of T in terms

of the tiling, similar to (5.16). In order to do so, we take into account the edges ei in the

curves γj that define the magnetic fluxes (similarly, all ei’s are included for V). The γj ’s

have an orientation and then the fields Xi associated to edges ei appear with a ±1 power

that we denote sign(ei). Combining these ideas, we get

Tjα =
∑

ei∈γj

sign(ei)〈ei, pα〉 (5.20)

5.3 Height changes as positions in a toric diagram

So far we have shown that GLSM fields are perfect matchings. This is half of the proof

of the Mathematical Dimer Conjecture, which in addition states that the height changes

(hx, hy) of a given perfect matching should be interpreted as the position in the toric

diagram of the corresponding GLSM field.

Let us define the following 3 × Nσ matrix

Gh =







hx

hy

1






(5.21)

The non-trivial piece of Gh is given by (hx, hy). We have included a third row with

value 1 for all perfect matchings that plays the role of the trivial coordinate of the toric

diagram.

Our goal is to prove that Gh defines the GLSM charge matrix Q through the vanishing

linear relations among its columns, and thus can be identified with G in (3.9). i.e. we want

to show that
Q GT

h = 0 ⇔ QF GT
h = 0

and QD GT
h = 0

(5.22)

For the third row of Gh, (5.22) means that the trace over perfect matchings of any

given GLSM U(1) charge vanishes. It is straightforward to see that this condition is always

satisfied. Thus, from now on we concentrate on the (hx, hy) piece of Gh.
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Figure 9: Sets of edges Ex and Ey that enter the computation of (hx, hy).

Let us first show that QF GT
h = 0. From (3.3), we have

T QT
F = 0 (5.23)

Hence, it is sufficient to prove that hx and hy are given by linear combinations of the

rows of T . It is straightforward not only to show that this is the case but also to identify the

precise form of these linear combinations. The key ideas are the interpretation of height

changes as horizontal and vertical net flows as discussed in section 2.2 and that KT is

computed as the “overlap” of perfect matchings and edges (5.16). With this in mind, we

can express the height changes as

hx(pα) =
∑

j





∑

ei∈Ex

signx(ei)Kij



 Tjα (5.24)

hy(pα) =
∑

j





∑

ei∈Ey

signy(ei)Kij



 Tjα (5.25)

where Ex and Ey denote the set of edges crossing the horizontal and vertical boundaries of

the unit cell (i.e. the flux lines Cx and Cy), and signx(ei) and signy(ei) indicate the direction

of the crossing. For illustration, let us consider our dP2 example, for which

Ex = {X52,X53, Y23} signx(ei) = {−1, 1,−1}

Ey = {X23, Y23} signy(ei) = {1,−1}
(5.26)

Figure 9 shows Ex and Ey in the tiling.

Using (3.3), the fact that (hx, hy) is given by the linear combinations constructed in

(5.24) and (5.25) implies that

QF GT
h = 0 (5.27)

as we want. The missing part of the proof is to show that QD GT
h = 0. This can be done

as follows

(

QD GT
h

)

lx
=

∑

ei∈Ex

signx(ei)
(

V UT T KT
)

li
=

∑

ei∈Ex

signx(ei)
(

V KT
)

li

=
∑

ei∈Ex

signx(ei)∆li = 0 (5.28)
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In the first equality we have used (5.24) and (3.7). In the second one, we used (3.6).

In the third one, we used (3.5). The last step uses the following reasoning. Every face

l of a tiling (l = 1, . . . , F ) is crossed by Cx over an even number of edges.7 Typically,

as in the dP2 example we are considering in the paper, this intersection number is 0 or

2, but larger values are also possible. Every edge intersected by Cx corresponds to a

field Xi in Ex that transforms either in the fundamental (∆li = 1) or antifundamental

(∆li = −1) representation of the SU(N) gauge group associated with face l.8 Let us

consider two edges in ei and ej in Ex that are consecutive as we move around face l. Then,

∆li/∆lj = 1 or −1 provided ei and ej are separated by an odd or even number of edges,

respectively. Conversely, signx(ei)/sign
x(ej) = 1 or −1 if they are separated by and even

or odd number of edges. Hence, we have that signx(ei)∆li/sign
x(ej)∆lj = −1, and thus

∑

ei∈Ex
signx(ei)∆li = 0.

With identical reasoning, it follows that

(

QD GT
h

)

ly
=

∑

ei∈Ey

signy(ei)∆li = 0 (5.29)

From (5.28) and (5.29), we conclude that

QD GT
h = 0 (5.30)

Hence, we have Q GT
h = 0 and we can identify

Gh ≡ G (5.31)

We have shown that the slopes of the perfect matchings are the positions of the cor-

responding GLSM fields in the toric diagram, completing our proof of the Mathematical

Dimer Conjecture.

Before closing this section we notice an interesting result that was possible due the

use of dimers. Equations (5.24) and (5.25) give the positions of GLSM fields in the toric

diagram directly as linear combinations of rows of KT . Nothing like these expressions was

clear from the Forward Algorithm and shows, once again, how dimers manage to pick the

natural variables for computing the moduli space.

6. Conclusions

In this paper we have proved the Mathematical Dimer Conjecture. That is, we have

explicitly shown that there is a one-to-one mapping between the GLSM fields that realize

the moduli space of a toric quiver and perfect matchings in the brane tiling dual to the

7Actually, a face of the tiling may be crossed by Cx over an odd number of edges. This happens when there

are chiral multiplets transforming in the adjoint representation of the corresponding gauge group. Adjoint

fields are represented in the tiling by edges such that the faces at both of its sides are identified (arrows

beginning and ending at the same node in the dual quiver). For a field Xi in the adjoint representation of

the lth gauge group ∆li = 0 and thus the derivation of (5.28) still holds. The reader should keep in mind

this subtlety.
8As we explained, it is straightforward to incorporate fields in the adjoint representation to the proof.
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periodic quiver. We have also demonstrated that the position of each GLSM field in the

toric diagram is given by the slope of the corresponding perfect matching.

We have witnessed how dimers often provide an intuitive interpretation of otherwise

obscure steps in the computation of the moduli space. An example of this type is that

F-term equations can be easily solved using gauge transformations of weights as shown

in section 5.1. This leads to the magnetic flux variables and V as natural intermediate

variables of the Forward Algorithm.

There are several interesting directions that deserve further investigation. A partial

list of them is:

• Our discussion has been limited to toric phases of the gauge theories (i.e. phases

in which all the gauge groups have the same rank). Non-toric phases are obtained

by performing a Seiberg duality transformation on a node for which the number of

flavors is larger than twice the number of colors. It would be interesting to investigate

whether some generalization of the brane tiling methods is applicable to these phases.

• Conformal invariance can be broken by incorporating fractional branes (D5-branes

wrapped over vanishing 2-cycles in the singular geometry). They modify the ranks

of gauge groups in the quiver in a way that can be visualized in the brane tiling as

a ”chessboard” configuration [51]. The resulting RG flows take the form of duality

cascades. It would be worth studying whether such RG flows are captured by some

modification of the tiling.

• Recently, there has been a renewed interest in marginal deformations of gauge the-

ories [52] and the construction of their supergravity duals [53]. Given the simplicity

with which superpotentials are encoded by brane tilings, it is natural to ask whether

and how it is possible to study this problem within this framework.

• It is interesting to explore whether brane dimer methods can be extended to D(9−2p)–

branes probing p-complex dimensional toric singularities. It is natural to conjecture

that the corresponding tilings will be (p − 1)–dimensional and live on a (p − 1)–

dimensional torus. The concepts of height function, slopes and characteristic poly-

nomial should be appropriately generalized to (p−1) dimensions. In analogy to what

happens in four dimensions, if these constructions exist in other dimensions, they

might be useful for finding possible field theory dualities.

• Another direction is to investigate what is the geometric and gauge theory meaning

of brane tilings on the Klein Bottle, such as the one presented in section 2.1.
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Figure 10: Perfect matchings and their slopes for Model II of dP2.

Perfect matchings for dP2

Figure 10 presents the ten perfect matchings for Model II of dP2 and their slopes.
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